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Summary

This progress report summarizes the work carried out during the period January 1 to June

30, 1990. During this period, work has been carried out to extend the near-wall models

formulated for the incompressible Reynolds-stress equations to compressible flows. The idea of

splitting the compressible dissipation function into a solenoidal part that is not sensitive to changes

of compressibility indicators and a compressible part that is directly affected by these changes is

adopted. This means that all models involving the dissipation rate could be expressed in terms of

the solenoidal dissipation rate and an equation governing its transport could be formulated to close

the set of compressible Reynolds-stress equations. The near-wall modelling of the dissipation-rate

equation is investigated and its behavior near a wall is studied in detail using a k-_ closure. It is

found that all existing modelled equations give the wrong behavior for the dissipation rate near a

wall. Improvements are suggested and the resultant behavior is found to be in good agreement

with near-wall data. Furthermore, the present modified k-_ closure is used to calculate a flat plate

boundary layer and the results axe compared with four existing k-_ closures. These comparisons

show that all closures tested give essentially the same flow properties, exc._-_t in a region very close

to the wall. In this region, the present k-_ closure calculations are in better agreement with

measurements and direct simulation data; in particular, the behavior of the dissipation rate.



Contents

S_ soowlose jeooleeoooseso_o.s.se***oosooooaso***ssss,sootsooeeosoootoooososs J#°6s*_a°* eQS°°°Q°S'S li

Contents ............................................................................................... ii

1. Introduction .................................................................................. 1

2. Review of the modelling of incompressible near-wall flows ........................... 3

3. Objectives .................................................................................... 5

4. Progress to-date ............................................................................. 6

o

o

Near-wall modelling and validation of the dissipation-rate equation .................. 7

5.1 Modelling of the dissipation-rate equation ........................................ 9

5.2 Validation of the improved dissipation-rate equation ........................... 12

Conclusions ................................................................................. 16

7. Plans for next period ....................................................................... 17

References ............................................................................................ 17

Figures ................................................................................................ 21

ii



1. Introduction

Density variation in a turbulent flow can come from different origins. Some of these are:

(i) isothermal mixing of gases of different density, (ii) strong temperature gradient in a

homogeneous fluid, (iii) reactive flows and (iv) compressibility effects in high speed flows. Each

of these origins gives rise to specific aspects that require modelling if the governing flow equations

are to be solved. This project makes an attempt to address the last origin; that is, the modelling of

high speed compressible turbulent flows.

Most studies on turbulent compressible flow modelling [1-5] invoke the Morkovin

postulate [6] to justify the direct extension of the incompressible models to compressible flows.

The postulate was formulated based on early experiments on compressible boundary layers along

adiabatic walls and compressible wakes, and essentially suggested that the dynamical field in a

compressible flow behaves like an incompressible one. This postulate was used by numerous

researchers to assure that compressibility effects can be accounted for correctly by the variable

mean density in the governing equations alone. The validity and extent of Morkovin's postulate

was reviewed by Bradshaw [2] and he noted that the postulate is appropriate for flows where the

density fluctuations are moderate. Therefore, the postulate is not valid for hypersonic boundary

layers, where the Mach number is five or greater, and for flows with strong pressure gradient

effects, such as shock-turbulent-boundary-layer interactions. The latter point was confirmed by

the studies of Wilcox and Alber [1] and Bradshaw [7] and led to proposals to have the effects of

pressure-dilatation correlation modelled in the governing equations [8]. Besides this modification,

all turbulent compressible flow modelling rely on incompressible models. Therefore, their

applicability is limited.

Two sourcesof difficultiesarisewhen incompressibleturbulencemodels are extended to

compressible flows. One is due to compressibilityitselfand another is associatedwith the

turbulcnccphenomena. In the case of compressible flows,the flow equations are coupled and



temperature can no longer be considered as a passive scalar. Rather, it is an active scalar and all

other thermodynamic variables play new roles as a result. Therefore, mathematically,

compressible flows cannot be considered as straightforward extension of incompressible flows.

Furthermore, pressure is only a force term in incompressible flows and all disturbances propagate

at infinite speed. On the other hand, pressure also supports finite velocity propagation of

disturbances in compressible flows. Further complications come from the variable mean density,

which contributes to increased non-linearity of the governing equations, and the fluctuating

density, which causes the closure problem to become ma'e difficult.

The second source of difficulties has to do with the turbulence phenomena. Here, even for

incompressible flows, many problems remain to be resolved [9,10], especially when the flow is

unsteady and/or three-dimensional [11]. However, among the many problems associated with

turbulence modelling, one stands out as most f_ntal and urgently needs attention. This is the

treatment of the near-wall flow. Conventional approach is to invoke the wall function assumption;

thus implying that the turbulence is in local equilibrium. Even for simple shear flows, the

assumption is not quite valid because near-wall turbulence is not in local equilibrium.

Consequently, a near-wall treatment is necessary in order to obtain results that agree with

measurements in the near-wall region [12,13,14]. The need for near-waU treatment of flows with

heat and mass transfer has also been pointed out [15,16]. This problem, therefore, is expected to

be more acute in compressible turbulent flow modelling. In this case, as pointed out above,

temperature cannot be considered as a passive scalar and the variable mean density further

compounds the non-linearity of the governing equations. The present project attempts to model

near-wall compressible turbulent flow where there is a strong coupling between velocity and

temperature.
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2. Review of the modelling of incompressible near-wall flows

With the advent of high-speed computers, it is widely accepted that the isotropic diffusivity

and wall function approach has to be abandoned for the calculation of complex turbulent flows [9-

18]. This is especially the case for heat and mass transfer problems, even in simple pipe flows

[161. For non-buoyant flows, measurements [19,20] have shown that turbulent heat flux in the

flow direction is two or three times larger than that normal to the wall, even though the streamwise

temperature gradient is much smaller than its normal counterpart. For buoyant and/or compressible

flows, the eddy diffusivity assumption is even less appropriate. Experimental measurements

[21,22] in a vertical heated pipe flow showed a substantial change in the turbulence structure, thus

implying a reversal of the direction of the axial turbulent heat flux (i.e., the axial heat flux was

measured upward instead of downward as implied by the eddy diffusivity concept). It is because

of the above-mentioned reasons that many recent contributions to turbulence modelling are devoted

to developing low-Reynolds-number near-wall turbulence closures [9,10,14,23]. Although much

progress has been achieved in recent years in the modelling of the Reynolds-stress transport

equations [23], the modelling of the scalar field, on the other hand, is still rather primitive. The

reason is that turbulent stresses are a very important input to the heat-flux equations. Therefore,

model development of the latter depends largely on the availability and correctness of the

Reynolds-su'ess model. Furthermore, heat-flux transport is influenced by more than one time scale

[24]. Consequently, it is more difficult to achieve closure of the heat-flux transport equations than

the Reynolds-stress equations. Besides, a shortage of reliable and relatively accurate near-wall

heat-flux measurements also contributes to the slow development of a near-wall turbulence model

for the heat fluxes. Comprehensive reviews of the modelling of turbulent heat transfer can be

found in Refs. 16 and 25.

Due to the difficulties mentioned above, the most common approach to turbulent heat

transfer studies is to model the normal heat flux using the classical Boussinesq approximation.
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Theunknowneddy diffusivity for heat is calculated by prescribing a turbulent Prandfl number, Pr t.

Realizing the limitation of the calculation methods based on p_bod Pr t, researchers try to

improve the modelling by resorting to two-equation [26] and algebraic-flux models [27] for heat

transport. Despite some successes, it is still believed that the most reliable prediction methods are

those based on a second-moment closure. The reason is that the turbulent interactions which

generate the Reynolds stresses and heat fluxes can be treated with less empiricism. Moreover, for

those processes which cannot be so handled, a more rational and systematic set of approximations

can be derived.

A first attempt to compute turbulent heat transfer process using high-Reynolds-number

second-moment closures was made by meteorological fluid dynamicists [28,29,30]. On the other

hand, applications of similar second-moment turbulence closures to engineering heat transfer

problems have been attempted by Baughn et al. [31] and Launder and Samaraweera [32], among

others. Recently, the model was extended by Yoo and So [15] to calculate isothermal, variable-

density flows in a sudden-expansion pipe. In their approach, the flow and turbulence field were

resolved by a low-Reynolds-number second-moment closure. The scalar flux equation was closed

by high-Reynolds-number models and the near-wall scalar fluxes were evaluated assuming a

constant turbulent Schmidt number. This is one way to handle the scalar flux transport equations

for the near-wall flow, even though the approach is known to be quite inappropriate for most

turbulent heat and mass transfer problems of engineering interests [ 15,16,17]. The reason for this

appears to be that, so far, no suitable near-wall second-moment closure for scalar flux transport

has been developed. This is due, in part, to a lack of detailed near-wall scalar flux measurements

and, partially, to the unavailability of an asymptotically correct near-wall Reynolds-stress model.

Recently, Lai and So [23] have developed a near-waU Reynolds-stress turbulence model

that can correctly predict the anisotropy of the turbulent normal stresses. The success of that model

provides the impetus to extend the approach of Ref. 23 to model turbulent heat transport near a

wall. It is noted, however, that the modeUing of the dissipation rate of temperature variance is quite
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immature, even the high-Reynolds-number version of the modelled equation is not weLl developed.

In view of this, Lal and So [33] concentrated their effort on *,he modcUing of near-wall heat-flux

U'ansport assuming temperature to be a passive scalar in the flow. Therefore, their near-wall heat-

flux model is equally valid for mass transport where mass is also a passive scalar. Their approach

is similar to that outlined in Ref. 23 and is based on the limiting wall behavior of the heat-flux

transport equations. This way, the modelled equation is valid all the way to the wall and the

assumptions of a temperature wall function and a constant turbulent Prandfl number are not

required. Their model is validated against fuUy-developed pipe flow data with uniform heat flux

prescribed at the wall [19,20,34,35]. The result is very encouraging.

3. Objectives

With the availability of a near-wall Reynolds-stress and heat-flux model, the time is now

ripe for its extension to flows where temperature cannot be considered as a passive scalar, such as

in a compressible flow. This means that the transport equations for the temperature variance and

its dissipation rate have to be solved simultaneously with the governing mean flow and energy

equations, the Reynolds-stress equations and the heat-flux equations in a second-moment closure

of the problem. Therefore, near-wall models for the equations governing the transport of the

temperature variance and its dissipation rate are also required, in addition to the near-wall model for

Reynolds stresses and heat fluxes. The present project attempts to accomplish these objectives

using the approach outlined by Lai and So [23,33] in their modelling of incompressible near-wall

Reynolds stresses and heat fluxes. More specifically, the present objectives can be stated as

follows.

(1) To extend the near-wall Reynolds-stress and heat-flux model of Lai and So [23, 33] to

compressible flows.

(2) To formulate a near-wall closure for the temperature variance translX_ equation.
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(3) To formulate a near-wall closure for the equation that governs the transport of the

dissipation rate of the temperature variance.

(4) To validate these closures using data from heat and mass transfer experiments.

(5) To extend these closures to compressible flows and to validate them against high speed

flow data.

4. Progress to-date

Since the beginning of this contract period, work on extending the incompressible near-

wall Reynolds-stress models of Lai and So [23] has been carried out. An oral presentation of this

work has been made at NASA Langley Research Centre on February 22. Various suggestions

were given on how to further improve the near-wall models; in particular, the modelling of the

compressible dissipation function. The splitting of this function into a solenoidal part and a

compressible part was suggested. This way, the solenoidal part is not affected by compressibility

effects and could be modelled by directly extending the incompressible near-wall models for the

dissipation function to compressible flows. A second suggestion concerned with the incorrect

near-waU behavior of e, the dissipation rate of the turbulent kinetic energy. Essentially all existing

modelled e-equations give this incorrect behavior. The suggestion is to formulate a new e-equation

so that the correct near-wall behavior of e according to direct simulation data could be reproduced.

Work on these two suggestions has been carried out. The suggested split of the dissipation

function has been adopted and a near-wall model for the solenoidal part has been formulated. This

work will be reported in the next progress report when the formulation on the heat-flux model is

discussed. The present report deals with work carried out to improve the e-equation. In the

following, a summary report is given on the near-wall modelling and validation of the e-equation.
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$. Near-wall modelling and validation of the dissipation-rate equation

According to the near-wall Reynolds-stress closure of Lad and So [23], the models for the

dissipation and velocity pressure-grsdient correlation terms are required to satisfy the asymptotic

near-wall behavior of the exact terms in the Reynolds-stress equation. Good predictions of low-

Reynolds-number plane channel flows [36,37] are obtained. The only exception is the near-wall

distribution of £. Direct simulation data shows that e reaches a plateau in the near-waU region

before increases to a maximum at the wall. The prediction, on the other hand, gives a maximum

away from the wall and a wall value that is about half that of the direct simulation result When the

closure is applied to calculate a curved channel flow [38], the same behavior is obtained. In spite

of the discrepancy noted in the prediction of e, the near-wall behaviors of all other turbulence

properties are calculated correcdy, including the wall friction velocities on the convex and concave

side of the channel [39]. These results seem to suggest that a correct prediction of e near a wall is

not so important as far as the other turbulence properties are concerned. Further evidence in

support of this conclusion can be gleaned from the heat transfer modelling calculations [33].

The reason for this discrepancy could be traced to the modelled e-equation.

complicated exact e-equation is modelled to give

C__=D_+D T+P_-D_.+_

The

(1)

where the terms from left to right represent convection, viscous diffusion, turbulent diffusion,

mean-shear production and viscous dissipation of e, and _ is a near-wall correction for D e.

Various arguments [14,40,41] have been used to justify the inclusion of _ in Eq. (1) and different

approaches have been proposed for the determination of _. Most approaches rely on a first-order

near-wall balance of the e-equation [40,41]. However, Shima [14] proposes to consider the

coincidence condition,
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which is guaranteed by the exact equation but not necessarily by the modelled equation. In Eq.

(2), k is the turbulent kinetic energy, v is fluid kinematic viscosity, xj is the jth component of the

spatial coordinate and t is time. The near-wall Reynolds-stress closure [23,33,39] adopts this idea

to derive _. Even then, the predicted e behavior near a wall is incorrect.

According to Mansour et al. [42], this incorrect behavior could be traced to the models

proposed for Pe and D e. Their analysis shows that existing models for Pe and D e, such as Pe -

C.el(f./k)P and D e - C_(¢._/k) under-predict Pe and D e in the region 0 "_y+ < 15. Here, C_1 and

Ce2 are model constants, P is the production of k, _ = e - 2v(_'_/-k/_xj) 2, y+ -- yuz/v, uz is the

friction velocity and y is the normal coordinate measured from the wall. As a result, they suggest

modifying Pe and D e by multiplying them by fl and f2, respectivley. These are damping functions

whose values quickly approach one for large y+. They use the direct simulation data to determine

fl and f2 and then apply the numerically determined fl and f2 to Pe and D e. The resultant k-E

closure calculations give excellent agreement with the direct simulation data. They also point out

the _ of modelling -h-V, the turbulent shear stress. In general, -h-V is given by

-h-9 = vt(_U/'Oy) = C.txfit(k2/c) (_U_y), (3)

for simple wall shear flow, where U is the mean flow velocity, ftt is a damping function and Ctt is

a model constant. The analysis of Mansour et al. [42] shows that the behavior of f_t near a wall

has a significant effect on the overall calculated k and E.

Recently, Myong and Kasagi [43] suggest that if ftt is modelled to give a near-waU

behavior of y-I as compared to a conventional behavior of y [40,41], then, only D e needs *o be

damped. In other words, fl can be set equal to one and they propose a new f2 based on a form

first put forward by Hanjalic and Launder [12]. Their k-E closure calculations are in good



agreementwith measurements.However,their calculated e behavior near a wall is no different

from those given in [14,23,33,29-41] and is contrary to that shown in [42]. A variety of other

two-equation closures has been analysed by Speziale et al. [44]. Again, their calcualted 8 behavior

for a boundary-layer flow is contrary to that given in [45] and is similar to those obtained in

[14,23,33,39-41,43]. Their results are calculated based on fit that behaves like y-I near a wall.

With the exception of f., all other turbulence properties are predicted corr_tly compared to the data

collected in [41]. Once again, their results tend to show that the problem of an incorrect near-wall

behavior of e is associated with the equation for the turbulent time scale.

The work in this period concentrates on making use of all these findings to seek

modifications to P_ and D_ so that the resultant E distribution mimicks the direct simulation results

[36-38,45] in the near-wall region. Since the same e-equation is used for both k-E and Reynolds-

stress closures, it is prudent to start with the k-8 closure. Certain conswaints are imposed and these

are the correct behavior of fit in the near-wall region and the accurate predictions of all turbulence

properties and their limiting behavior near a wall. Furthermore, an asymptotic approach of the k-E

closure to its high-Reynolds-number version far away from a wall is also stipulated. In the

process, it is hoped that the extent of the influence of the near-wall modifications on the whole

flow could be assessed.

5.I Modelling ofthedissipation-rateequation

The k-_ closure to be investigated is given by the equations

(4)

(5)

where ok, or, C_1 and C__are model constants, P = _ (_U.t/'0xj) and ft is a damping function to

be determined. The wall boundary conditions for k and E are given by k w = 0 and Ew -
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2v (bl/E/'dxj)2w. Here, the subscript w is used to denote the condition at the wall. On the other

hand, the external boundary conditions depend on the type of flows considered. For boundary-

layer flows, the conditions k.. = 0 and e.. = 0 are appropriate, where subscript oo is used to denote

the edge of the boundary layer. For internal flows, where a symmetry axis exists, the conditions

_k/'0n = 0 and _/'0n = 0 can be specified. Here, n is a coordinate normal to the symmetry axis. In

the present investigations, only stationary, two-dimensional thin shear layers or fuUy-developed

turbulent flows arc considered. Therefore, only the gradient normal to the flow direction is

Thus simplified, the k and eimportant and the turbulent shear stress is given by -_'_ alone.

equations become

u_k .._k o_ [ _k_ _/vt_k_ --_U

ave--

+ = +3ylo fe k ,

(6)

(7)

where U and V are the mean velocities along x and y, respectively, and v t is given by C_fg k2/e.

The e-equation could be improved by first considering the k-e closures of Lai and So [23]

and Myong and Kasagi [43] to investigate the source of the incorrect behavior of ¢ near a wall.

The values of the model constants and the functions fg and fe for these two closures are

summarized in Table 1. Since the original Lai and So [23] closure gives a v t that does not behave

like y3 near a wall, the ftt used by Lai and So [23] has to be modified. The resultant ftt is listed in

Table 1 and the behavior of v t is found to be y3 near a wall [36,43]. As a result, their fe funtion

has to be modified to reflect the change in ftt. In Table 1, fe for the Lai and So [23] closure is

defined by combining their _ and D e terms together to give Ce2f e e2/k. The function fw,2 is given

by fw,2 = e'(Rd64)2 and R t = k2A, e is the turbulent Reynolds number.

In order to understand the incorrect near-wall behavior of e given by these two closures,

they arc used to calculate the flat plate boundary layer data collected in [41,47]. The results shown
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in Figs. 1-3 are for a distance of x _--5 m, R x = 1.156 x 107 and R 0 -- 16,465, where R x and R0

are the Reynolds number based on x and momentum thickness 0, respectively. Figure 1 gives the

result of the mean flow while Figs. 2 and 3 give the distributions of k and _ near the wall. The

plots arc given in terms of y+. u+. k+ and _+ where u+ ffi U/t h. k+ = k/u_2 and I_+ = ev/u_. It can be

seen that the predictions of both closures are essentially identical and are in good agreement with

the data of [41] and the predictions of [44]. However, the near-wall behavior of c + is incorrect

compared to the data of [36,45,46].

Table 1 Constants and model functions for the three k-¢ closures considered.

Myong &
Kasagi [43]

Lai

[23]

C_t C_1 Ce2 ak ae

0.09 1.4 1.8 1.4 1.3

i i

(I + 3.45/

x(1 -e"y+pO)

& So 0.092 1.4 1.72 1.0 1.4 (1+3.45/¢l_
x tanh (3,+/95)

Present 0.096 1.48 1.78 1.01 1.45

C_

(1 + 3.45 / _ _. "1 2fw.2+--
x tanh (y+/120) e. C_

_)2k
v_

¢3y2

According to Mansour et al. [42], a possible source of error for the incorrect _ behavior is

the fe function. A plot of the f¢ behavior for these two closures is shown in Fig. 4. The results

show that both closures give a f_ that increases monotonically from zero at the wall to one around

y+ - 30. Near the wall, the behavior of k + and E+ is given by [36,41,46]

k + = ak y+2 + bk y+3 + ..... , (8)

¢+ ffi2ak + 4bky + + ....... (9)
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Therefore, fe shouldbehavelike y+2 very near a wall, otherwise,the term Ce2fee2/kwould

increaseindefinitely as the wall is approached. This quadratic behavior is guaranteed by the fe

functions listed in Table 1. However, the near-wall behavior of the modelled fe is not consistent

with the simulation data of [36]. Mansour et al. [42] used that data to calculate fE. According to

their calculation, fe increases steeply to overshoot one and then decreases to approach one

asymptotically. The behavior is like the present fe curve shown in Fig. 4. This means that, ff the

predicted E+ is to mimic the simulation data of [36,45], a fe that overshoots one in the near-wall

region has to be formulated. Furthermore, the proposed f¢ should behave like y+2 very near a wall

and asymptote to one around y+ = 30 in order to give results identical to those given by

[23,43,44]. The closure should also give the correct limiting behavior for k+/c+y +2, (-u--_/y+3)w

and _ where -u"-_ = -fiV/u_. According to the data of [36,46], _ varies from 0.18 to 0.22 and (-

u'-_/y+3) w = 8.5 x 10 -4. On the other hand, k+/_+y +2 is exactly 0.5 at the wall. These values,

with the exception of k+/e'+y ÷2, are listed in Table 2 for comparison.

An inspection of the fe functions of [23,43] plotted in Fig. 4 reveals that they could be

modified and made to mimic the direct simulation behavior of [36,45]. This means that f( has to

increase more rapidly and possibly overshoots one in the region 0 < y+ < 20. Such a behavior

could be reproduced by modifying the f_ function of [23] to that shown in Table 1.

5.2 Validation of the improved dissipation-rate equation

The improved ft is again used in Eq. (7) to calculate the flat plate boundary layer flow

[41,47]. Calculations are carried out for the same R x and R0 and the new results are plotted in

Figs. 14 for comparison with the previous results. Immediately, the following conclusions can be

drawn from these comparisons. First and foremost, the mean U distribution is not affected by ft

(Fig. 1). As a result, the U + versus In y+ plots for the three k-_ closures listed in Table 1 are

identical and the log region can be described by
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U+= I Iny++4.7.
0.41

(IO)

Secondly, the disuibutions ofk + and e+ beyond y+ = 100 are essentially the same; thus Indicating

that ft has little or no effect on the behavior of k+ and e+ beyond y+ ffi 100 (Figs. 2 and 3).

Thirdly, f_ significantly affects the behavior of _+ (Fig. 3) and much less so the behavior of k +

('Fig. 2) in the region 0 < y+ < 20. Fourthly, the value of v._ is very much affected by the rise of fe

in the region 0 < y+ < 10 ; the more rapidly fe increases in the region 0 < y + < 10, the higher the

F._ value (Figs 3 and 4). Finally, the near-wall behavior of e+ is entirely controlled by fe. The

improved fe gives a maximum _+ at the wall while the other two fe's give a maximum _+ away

from the wall. Furthermore, the closures of Myong and Kasagi [43] and Lai and So [23] predict

the location where the maximum c+ occurs to be at about y+ = 10, which approximately coincides

with the location of the second maximum of E+ in the present closure prediction (Fig. 3).

Table 2. Comparison of calculated wall properties with data

i

Present

Source Cfx 103

2.39

ak

0.098

 =2ak

i

0.196
i

Spezioleetal.[44] 2.45 0.047 - 0.094

Myong and Kasagi [43] 2.41 0.054 7.3 0.108
,i

Chien [40] 2.44 -0.056

0.076Lai and So [23] 2.40 6.5

Kim et al.[36] - 0.090 - 0.18
i i

Nishino and Kasagi [46] - 8.5 0.22

Patel et al. [41]
and Weighardt
and Tillmarm [47]

0.II0

0.025

to

0.050

2.43

0.113

0.152

0.05

IO

0.10
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The predicted near-wall e+ distributions are compared with the direct simulation data of

[36,45] in Fig. 5. Spalarfs data [45] is from a flat plate boundary layer at R 0 = 1410 while the

data of Kim et al. [36] is from a fully-developed plane channel flow at a Re D = 6600. Here, Re D

is the Reynolds number based on channel width and centerline velocity. Since the Reynolds

numbers of these flows are widely different from the present calculations, a quantitative

comparison between the various results is not advisable. However, a qualitative comparison is

appropriate. The present calculated e + behavior near the wall is similar to that obtained from direct

simulation. Furthermore, the y+ region where the plateau of O" occurs is correctly predicted to be

around 5 < y+ < 15. On the other hand, the predicted wall value is between that obtained by

Spalart [45] and Kim et al. [36]. The other closure predictions are contrary to the direct simulation

results and give a totally incorrect trend in the near-wall region.

Very close to the wall, independent of the flow Reynolds number, the behavior of k +, t +

and -u--'_ is given by

k+/Y +2 ---ak + O(Y+), (II)

k+/e+y +2 - 0.5 + O(y+), (12)

.-6V+ly+3= auv + O(y+). (13)

According to direct simulation data [36] and measurements [46], ak varies from 0.09 to 0.11. In

other words, e + should vary from 0.18 to 0.22. Also, auv ffi 8.5x10 -4 according to [46]. These

values are listed in Table 2 together with the calculated values. The plots of Eqs. (11) - (13) are

shown in Figs. 6-8, respectively.

It can be seen that the present calculated ak agrees well with data [36,46] while the ak's

predicted by the other two closures do not. The linear relation given by Eq.(11) holds true in the

region 0 < y+ < 2 (Fig. 6). According to Eq.(12), k+/e+y +2 = 0.5. This is recovered exactly by
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the present closure but not by the other two closures tested. All three closures, however, show

that the variation of k+/e + with y+2 is linear in the region 0 ': y+ < 2 (Fig. 7). On the other hand,

the distribution of _ versus y+3 is only linear in the region 0 < y+ < 1 (Fig. 8) and auv thus

dteremined is highest for the closure of [43] and about the same for the present closure and that of

[23]. These values are listed in Table 2 for comparison with the data of [46]. The present

prediction is low by about 25% and it seems that the predicted auv is not affected by fe. Instead, it

is influenced by fw The present closure and that of [23] use the same f_t but different fe and they

give essentially the same auv. Since f_ has little or no effect on the near-waU behavior of _, the

prediction of auv could be improved by changing fw

A final comparison is made with Cf, the skin fricdon coefficient. The predicted values are

listed in Table 2 for comparison with the mean data collected from [41, 47]. In addition, the

predictions of Speziale et al. [44] and Chien [40] are also listed for comparison. It can be seen that

all calculated and measured values of Cf are within 2% of each other.

The budget of k in the nero'-wall region is shown in Fig. 9. In this plot, only the viscous

and turbulent diffusion of k, the production of k and the dissipation of k are shown. Since the

convection of k is not important in the near-waU region, it is not shown in Fig. 9. At the wall,

viscous diffusion balances dissipation. This balance extends to about y+ = 2. In the region, 2 < y+

< 15, all four terms are of equal importance. Beyond y+ = 15, the turbulence is in local

equilibrium, that is, production of k balances the dissipation of k. These results show that the

equilibrium turbulence assumption is applicable up to y+ = 15. This behavior is similar to the

direct simulation results of [36,45].

Since feinvolves the derivativesof k at the wall and away from the wall,itsnumerical

evaluationisnot necessary stable.Therefore,an attempt ismade to curve fitf¢by a quadratic

functionnear thewall and by afiniteseriesof Legcndrc polynomials beyond about y+ = 2. These
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two functions should combine to give a correct behavior of fe in the near-wall region.

functions thus determined are given by

The final

fe = Cy +2 0 < y+ < 2 (14a)

fe- ,Y_--0 CnPn(Y +) 2 < y+ < 11 (14b)

where Pn is the Legendre polynomial of order n and C = 0.0042438, C O = 0.755123, C 1 =

0.562578, C 2 = -0.438464, C 3 = -0.018244, C 4 = 0.242A95, C 5 = -0.101070, C6 = -0.064993

and C 7 - 0.057071. A plot of these functions and the original fe are shown in Fig. 10. It can be

seen that the curve fit fe replicates the original curve very well. The new fe is used to repeat the

calculation of the flat plate boundary layer. Essentially the same results are obtained. One

advantage of this new ft is that the numerical difficulties associated with the evaluation of the

derivatives of k at and near the wall have been avoided. As a result, the numerical calculation is a

lot more stablethanbefore.

6. Conclusions

Based on thisstudy,thefollowingconclusionscan be drawn.

(i) It is not necessary to m_xiify Pe and propose a near-wall correction function to bring the

_-equation to balance in the near-wallregion.

It is only necessary to modify the dissipation term by a damping function f¢ in the c-

equation.

The near-wallbehavior of e isvery much affectedby fewhile the flow propertiesbeyond

y+ = 50 are not much influenced by f_ and the near-wall behavior of

(iv) Afe has been found where thenear-wallbehaviorof e isreproduced correctly.

(v) The limiting values of k, e and -fiW are predicted correctly by the improved k-¢ closure.
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(vi) k-8 closures examined also give correct predictions of the flow properties beyond y+

-- 50. However, in the region, 0 < y+ < 50, the predictions are at variance with the present

closure calculations.

(vii) The new f_isnumericallystablenearthewall.

7. Plans for next period

The plans for the next period are:

(i) To further validate the e-equation, such as applying it to calculate internal and complex

flows.

(ii) To extend and implement the E-equation to compressible flows.

(tu) To complete the extension of the incompressible near-wall heat-flux models to

compressible flows.
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